中国科大在相互作用诱导的轨道陈绝缘体理论研究中获得新进展
近日,我校合肥微尺度物质科学国家研究中心国际量子功能材料设计中心与物理系乔振华教授研究组与加州州立大学北岭分校Dong-Ning Sheng教授、斯坦福大学Hong-Chen Jiang教授合作在相互作用诱导的轨道陈绝缘体理论研究中取得新进展,成果发表在2021年3月18日的权威物理学期刊《物理评论快报》[Phys. Rev. Lett. 126, 117602 (2021)]上。论文第一作者是中国科大2019届博士毕业生任亚飞,其博士论文曾获中国科学院院长特别奖和中科院百篇优博等荣誉,该工作也是其博士期间工作的一个延伸。
相互作用诱导的对称破缺和拓扑性为凝聚态物质的分类提供了基础。近年来,相关理论与实验研究不断加深对二者关系的理解。研究二者关系的一个理想平台是kagome材料体系。kagome晶格材料的单电子能带不仅具有类似于石墨烯的线形色散关系,还有二次相切的能带和平带,相互作用在不同的填充下可调并起着重要作用。在绝缘体情况下,kagome材料独特的晶格结构使得相互作用存在阻挫,对基态的磁性有重要影响;在半金属填充下,相互作用可以诱导非平庸的拓扑属性。近期,第一性原理计算方法预言了多种金属填充的材料体系,实验上也报道了kagome金属这一新型材料体系。然而,对于具有自旋的平带半填充的金属情况,除了少量基于平均场理论的研究,体系中的相互作用、磁性、以及与拓扑的关系尚待进一步探索和理解。
kagome晶格中tJV模型的基态量子相图
乔振华教授研究组与合作者通过密度矩阵重整化群(DMRG)方法研究了kagome晶格在平带半填充时的量子相,并结合平均场拓扑能带计算指出该体系具有轨道陈绝缘体相。该研究基于格点tJV模型,其中t、J、V分别表示最近邻跃迁作用、最近邻反铁磁交换作用和最近邻与次近邻间的库仑排斥作用。研究发现,在有限V的条件下,J的大小对体系的相图起到至关重要的作用。比较大的反铁磁相互作用倾向于形成一种向列型的电荷密度波,具有各向异性,但没有磁性(图1区域III);随着J降低,体系首先进入一个部分磁化的相(图1区域II);当J进一步降低时,体系进入完全极化的铁磁相,并具有量子化的反常霍尔电导(图1区域I),对应的拓扑数或陈数为±1。
有趣的是,该体系的陈数仅仅依赖于体系的轨道磁化,因此可定位为轨道陈绝缘体。相比于磁性和自旋-轨道耦合诱导的陈绝缘体,该研究中电子-电子相互作用诱导的陈绝缘体不依赖于自旋的取向。该项研究不仅提供了转角多层石墨烯之外的另一种轨道陈绝缘体体系,也为区分kagome体系中反常霍尔效应的不同物理机制提供了理论基础。
该工作得到了国家自然科学基金委、安徽省、校科研部和校人力资源部的资助。
论文链接:https://link.aps.org/doi/10.1103/PhysRevLett.126.117602
(合肥微尺度物质科学国家研究中心国际量子功能材料设计中心、物理学院、科研部)